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Unsupervised object segmentation from single images
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Is it possible to segment generic
objects from real-world single images?



What to expect
Is it promising or even possible to segment generic objects from real-

world single images using (existing) unsupervised methods?

• 4 complexity factors
• 6 benchmark datasets
• 4+1 representative approaches
• 15 types of ablation settings
• 210 experiments



Complexity 
Factors

• Object Color Gradient
• Object Shape Concavity
• Inter-object Color Similarity
• Inter-object Shape Variation



What is an object?

How to quantify the objectness biases in datasets?
Complexity Factors

Synthetic Images Real-world Images

appearance geometry
object-level Object Color Gradient Object Shape Concavity
scene-level Inter-object Color Gradient Inter-object Shape Variation



Complexity Factor - Object Color Gradient
object-level; appearance

object image

object boundary

gradient

inner gradient

grayscale image

Illustration Example images and factor values

0.000 0.165

0.518 0.802



Complexity Factor - Object Shape Concavity
object-level; geometry

Illustration Example images and factor values

0.020 0.121

0.526 0.750

object mask smallest convex 
polygon mask



Complexity Factor – Inter-object Color Similarity
scene-level; appearance

Illustration Example images and factor values

0.265 0.359

0.787 0.936

original average color

average colors in 
RGB space



Complexity Factor – Inter-object Shape Variation
scene-level; geometry

Illustration Example images and factor values

0.005 0.105

0.257 0.565

bounding boxes diagonals

diagonal 
variation



6 Benchmark 
Datasets

• dSprites
• Tetris
• CLEVR
• YCB
• ScanNet
• COCO



Biases in 6 Datasets - quantitative summary

dSprites Tetris CLEVR

YCB ScanNet COCO

Object Color Gradient

Inter-object Color Similarity

Object shape Concavity

Inter-object Shape Variation



4+1 Representative 
Methods

• AIR
• MONet
• IODINE
• Slot Attention
• Mask-RCNN*
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(a) AIR

0.0%

25.0%

50.0%

75.0%

100.0%

dSprites Tetris CLEVR YCB ScanNet COCO

AP PQ Pre Rec
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(d) SlotAtt (d) MaskRCNN
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5 Methods on 6 Datasets 
Quantitative Evaluation

Unsupervised Supervised



15 ablation settings

• C: single color 
• S: convex shape
• T: texture replaced
• U: uniform scale
• combinations of 

above four…



Complexity Factor
appearance geometry

object-level Object Color Gradient Object Shape Concavity
scene-level Inter-object Color Gradient Inter-object Shape Variation

Ablation Setting
appearance geometry

object-level C: single Color S: convex Shape
scene-level T: Texture replaced U: Uniform scale

From complexity factors to ablation settings



C - single Color ablation

YCB ScanNet COCO YCB-C ScanNet-C COCO-C

Average color in each object



S - convex Shape ablation

YCB ScanNet COCO YCB-S ScanNet-S COCO-S

Change shape each object to be convex



T – Texture replaced ablation

YCB ScanNet COCO YCB-T ScanNet-T COCO-T

Change objects appearance with distinctive texture



U – Uniformed scale ablation

YCB ScanNet COCO YCB-U ScanNet-U COCO-U

Change objects scale to be uniform



CSTU – fully ablated

YCB ScanNet COCO YCB-
CSTU

ScanNet-
CSTU

COCO-
CSTU

Apply all four ablation above
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Quantitative 
results of 
ablation 
experiments



object-level scene-level

Object Color 
Gradient

Object Shape 
Concavity

Inter-object 
Color Similarity

Inter-object 
Shape Variation

AIR

MONet

IODINE

Slot Attention

Why do unsupervised models fail on real-world datasets?

Finding 1
Different models favor 

different objectness bias;

Finding 2
None of the model can fully capture the 

true objectness biases in real-world images. 



Success on synthetic datasets  vs.  Failure on real-world datasets

unsupervised segmentation methods

real-world datasets

synthetic datasets

6 dataset
4 + 1 methods

4 complexity factors
• Quantitatively evaluate the 

objectness biases in datasets

15 ablation settings
• effectiveness of complexity factors;
• objectness biases in different models.

Can unsupervised methods segment objects from single images?

Future direction
- more discriminative objectness biases (e.g. motions);
- learn from single-object-dominant dataset.



Thanks
Project page: https://vlar-group.github.io/UnsupObjSeg.html

GitHub: https://github.com/vLAR-group/UnsupObjSeg
Arxiv: https://arxiv.org/abs/2210.02324


