Research Themes
  • ML: unsupervised learning, disentangled representation learning, zero-shot learning, etc.
  • CV: 3D reconstruction, 3D semantic/instance segmentation, neural rendering, etc.
  • Robotics: interaction with 3D scenes, autonomous navigation, path planning, etc.
Research Papers

Z. Song, J. Li, B. Yang
International Conference on Machine Learning (ICML), 2024
arXiv / Code

We present the first framework to represent dynamic 3D scenes in infinitely many ways from a monocular RGB video.

Z. Song, B. Yang
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024 (IF=20.8)
IEEE Xplore / Code

The journal version of our OGC at NeurIPS 2022. More experiments and analysis are included.

K. Lu, JX. Zhong, B. Yang, B. Wang, A. Markham
IEEE International Conference on Robotics and Automation (ICRA), 2024
Project Page

We present a novel framework to track and catch reactive objects in a dynamic 3D world.

Y. Yang, B. Yang
International Journal of Computer Vision (IJCV), 2024 (IF=11.6)
arXiv / Springer Access / Code

The journal version of our paper at NeurIPS 2022. Complete benchmark and analysis are included.

J. Li, Z. Song, B. Yang
Advances in Neural Information Processing Systems (NeurIPS), 2023
arXiv / Code

We present a novel framework to simultaneously learn the geometry, appearance, and physical velocity of 3D scenes.

Z. Liu, B. Yang*, Y. Luximon, A. Kumar, J. Li
Advances in Neural Information Processing Systems (NeurIPS), 2023
arXiv / Project Page / Code
(* indicates corresponding author)

We propose a novel ray-based 3D shape representation, achieving a 1000x faster speed in rendering.

Z. Zhang, B. Yang*, B. Wang, B. Li
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023
arXiv / Code
(* indicates corresponding author)

We propose the first unsupervised 3D semantic segmentation method, learning from growing superpoints in point clouds.

B. Wang, L. Chen, B. Yang*
International Conference on Learning Representations (ICLR), 2023
arXiv / Tweet / Code
(* indicates corresponding author)

We introduce a single pipeline to simultaneously reconstruct, decompose, manipulate and render complex 3D scenes.

K. Lu, B. Yang, B. Wang, A. Markham
IEEE International Conference on Robotics and Automation (ICRA), 2023
Project Page

We propose a generalizable framework for robotic manipulation.

Z. Song, B. Yang
Advances in Neural Information Processing Systems (NeurIPS), 2022
arXiv / Video / Code

We introduce the first unsupervised 3D object segmentation method on point clouds.

Y. Yang, B. Yang
Advances in Neural Information Processing Systems (NeurIPS), 2022
arXiv / Project Page / Code

We systematically investigate the effectiveness of existing unsupervised models on challenging real-world images.

Q. Hu, B. Yang*, G. Fang, Y. Guo, A. Leonardis, N. Trigoni, A. Markham
European Conference on Computer Vision (ECCV), 2022
arXiv / Code
(* indicates corresponding author)

We introduce a simple weakly-supervised neural network to learn precise 3D semantics for large-scale point clouds.

S. Ao, Y. Guo, Q. Hu, B. Yang, A. Markham, Z. Chen
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022 (IF=16.39)
IEEE Xplore / Code

The journal version of our SpinNet. More experiments and analysis are included.

B. Wang, Z. Yu, B. Yang*, J. Qin, T. Breckon, L. Shao, N. Trigoni, A. Markham
arXiv / Demo / Project page
(* indicates corresponding author)

We propose a new method to recover the geometry and semantics of continuous 3D scene surfaces from point clouds.

Q. Hu, B. Yang*, S. Khalid, W. Xiao, N. Trigoni, A. Markham
International Journal of Computer Vision (IJCV), 2022 (IF=7.41)
arXiv / Springer Access / Demo / Project page
(* indicates corresponding author)

The journal version of our SensatUrban. More experiments and analysis are included.

Wei Wang, Bing Wang, Peijun Zhao, Changhao Chen, Ronald Clark, B. Yang, Andrew Markham, Niki Trigoni
IEEE Sensor Journal, 2022 (IF=3.30)
arXiv / IEEE Xplore

We present a learning-based LiDAR relocalization framework to efficiently estimate 6-DoF poses from LiDAR point clouds.

A. Trevithick, B. Yang
IEEE International Conference on Computer Vision (ICCV), 2021
arXiv / News: CVer / Code

We introduce a simple implicit neural function to represent complex 3D geometries purely from 2D images.

Q. Hu, B. Yang*, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, A. Markham
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021 (IF=16.39)
arXiv / IEEE Xplore / Code
(* indicates corresponding author)

The journal version of our RandLA-Net. More experiments and analysis are included.

S. Ao^, Q. Hu^, B. Yang, A. Markham, Y. Guo
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021
arXiv / Code
(^ indicates equal contributions)

We introduce a simple and general neural network to register pieces of 3D point clouds.

Q. Hu, B. Yang*, S. Khalid, W. Xiao, N. Trigoni, A. Markham
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021
arXiv / Demo / Project page
(* indicates corresponding author)

We introduce an urban-scale photogrammetric point cloud dataset and extensively evaluate and analyze the state-of-the-art algorithms on the dataset.

W. Wang, P.P.B. de Gusmao, B. Yang, A. Markham, N. Trigoni
IEEE International Conference on Robotics and Automation (ICRA) , 2021
arXiv / IEEE Xplore

We introduce a simple end-to-end neural network with self-attention to estimate global poses from FMCW radar scans.

Q. Hu, B. Yang*, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, A. Markham
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020
arXiv / Semantic3D Benchmark / News: (新智元, AI科技评论, CVer) / Video / Code
(* indicates corresponding author)

We introduce an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds.

B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, N. Trigoni
Advances in Neural Information Processing Systems (NeurIPS), 2019 (Spotlight, 200/6743)
arXiv / ScanNet Benchmark / Reddit Discussion / News: (新智元, 图像算法, AI科技评论, 将门创投, CVer, 泡泡机器人) / Video / Code

We propose a simple and efficient neural architecture for accurate 3D instance segmentation on point clouds. It achieves the SOTA performance on ScanNet and S3DIS (June 2019).

W. Wang, M.R.U. Saputra, P. Zhao, P. Gusmao, B. Yang, C. Chen, A. Markham, N. Trigoni
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019
arXiv / IEEE Xplore

We propose a novel end-to-end deep parallel neural network to estimate the 6-DOF poses using consecutive 3D point clouds.

B. Yang, S. Wang, A. Markham, N. Trigoni
International Journal of Computer Vision (IJCV), 2019 (IF=6.07)
arXiv / Springer Open Access / Code

We propose an attentive aggregation module together with a training algorithm for multi-view 3D object reconstruction.

S. Lin, B. Yang, R. Birke, R. Clark
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR-W), 2019
CVF Open Access

We propose a simple embedding learning method that jointly optimises for an auto-encoding reconstruction task and for estimating the corresponding attribute labels.

B. Yang, S. Rosa, A. Markham, N. Trigoni, H. Wen
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2018 (IF=17.73)
arXiv / IEEE Xplore / Code

We propose a novel neural architecture to reconstruct the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks.

Z. Wang, S. Rosa, B. Yang, S. Wang, N. Trigoni, A. Markham
International Joint Conference on Artificial Intelligence (IJCAI), 2018
arXiv / Code

We present a neural framework to predict how a 3D object will deform under an applied force using intuitive physics modelling.

B. Yang*, Z. Lai*, X. Lu, S. Lin, H. Wen, A. Markham, N. Trigoni
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR-W), 2018
CVF Open Access / IEEE Xplore
(* indicates equal contribution)

We propose an efficient and holistic pipeline to simultaneously learn the semantics and structure of a scene from a single depth image.

Z. Wang, S. Rosa, L. Xie, B. Yang, S. Wang, N. Trigoni, A. Markham
IEEE International Conference on Robotics and Automation (ICRA) , 2018
arXiv / IEEE Xplore / Video / Code

We present a novel generative adversarial network to predict body deformations under external forces from a single RGB-D image.

B. Yang, H. Wen, S. Wang, R. Clark, A. Markham, N. Trigoni
IEEE International Conference on Computer Vision Workshops (ICCV-W) , 2017
arXiv / IEEE Xplore / News: 机器之心 / Code

We propose a novel approach to reconstruct the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks.